Separable Nonlinear Least-Squares Parameter Estimation for Complex Dynamic Systems
نویسندگان
چکیده
منابع مشابه
Nonlinear Least-squares Estimation
The paper uses empirical process techniques to study the asymptotics of the least-squares estimator for the fitting of a nonlinear regression function. By combining and extending ideas of Wu and Van de Geer, it establishes new consistency and central limit theorems that hold under only second moment assumptions on the errors. An application to a delicate example of Wu’s illustrates the use of t...
متن کاملEmpirical Distributions in Least Squares Estimation for Distributed Parameter Systems
We consider the estimation of error distributions in least squares identiication of distributed parameter systems. Asymptotic properties of approximate error sequences are developed. In particular, we examine consistency and asymptotic normality of empirical estimates of the error distribution. The consistency obtained is analogous to the Glivenko-Cantelli theorem. For asymptotic normality, we ...
متن کاملLeast-squares parameter estimation for systems with irregularly missing data
This paper considers the problems of parameter identification and output estimation with possibly irregularly missing output data, using output error models. By means of an auxiliary model (or reference model) approach, we present a recursive least-squares algorithm to estimate the parameters of missing data systems, and establish convergence properties for the parameter and missing output esti...
متن کاملDecomposition Methods for Least Squares Parameter Estimation
In this paper least squares method with matrix decomposition is revisited and a multiple model formulation is proposed The proposed formulation takes advantage of the well established decomposition methods but possesses a multiple model structure which leads to simpler and more exible implementations and produces more infor mation than the original least squares methods Several application exam...
متن کاملLeast-Squares Parameter Estimation Algorithm for a Class of Input Nonlinear Systems
This paper studies least-squares parameter estimation algorithms for input nonlinear systems, including the input nonlinear controlled autoregressive IN-CAR model and the input nonlinear controlled autoregressive autoregressive moving average IN-CARARMA model. The basic idea is to obtain linear-in-parameters models by overparameterizing such nonlinear systems and to use the least-squares algori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complexity
سال: 2020
ISSN: 1076-2787,1099-0526
DOI: 10.1155/2020/6403641